LINEAR ALGEBRA HOMEWORK

JULY 22, 2023

Exercise 1. Let $f: F^{n} \rightarrow F^{m}$ have linear properties. That is,

$$
\begin{aligned}
\lambda x & \mapsto f(\lambda x)=\lambda f(x), \quad \forall \lambda \in F, \forall x \in F^{n} ; \\
x+x^{\prime} & \mapsto f\left(x+x^{\prime}\right)=f(x)+f\left(x^{\prime}\right), \quad \forall x, x^{\prime} \in F^{n} .
\end{aligned}
$$

Does there exist an $m \times n$ matrix A, such that $f(x)=A x$?
Exercise 2. You have now shown that linear maps $F^{n} \rightarrow F^{m}$ correspond to $m \times n$ matrices bijectively (from the uniqueness and existence results this morning). Consider composing two linear maps $f: F^{n} \rightarrow F^{m}, g: F^{m} \rightarrow F^{k}$.
(1) Show that their composition $g f$ is linear.
(2) Let A, B, C be the matrices corresponding to the linear maps $f, g, g f$. Write a formula for the coefficients $c_{i j}$ of C, in terms of the coefficients of A, B.
The matrix C is called the matrix product of A with B. We write $C=B A$.
(3) Consider 3 matrices P, Q, R and assume that the matrix products $(P Q) R$ is defined. Show that $P(Q R)$ is also defined, and that the two products are equal.

